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Abstract—Chiral bisoxazolylphosphine ligands 1 [(S,S)-PhP(Ox-R)2: R=Me, iPr, tBu] with an N�P�N backbone were prepared
from chiral 4-alkyl-2-phenyl-4,5-dihydrooxazole compounds. These ligands coordinated to Pd(II) ion as bidentate ligands
selectively to give a stereogenic phosphorus atom. The Pd-(S,S)-PhP(Ox-tBu)2 1c catalyst evoked high enantioselectivity in
asymmetric allylic substitutions of acyclic substrates using dimethyl sodiomalonate as nucleophile. In the reaction of 3-penten-2-yl
acetate, which affords a �-allyl intermediate with a small steric factor, the Pd-1c catalyst successfully induced very high
enantioselectivity (94% ee) indicating the effectiveness of the P-stereogenic center formed by selective ligation of ligand 1. In the
reaction of cyclic substrates, moderate to high enantioselectivity was obtained by Pd-1 catalyst using the sodium salt of dimethyl
methylmalonate.
© 2003 Elsevier Ltd. All rights reserved.

In catalytic asymmetric reactions, many chiral phos-
phine ligands have been reported1 to induce high enan-
tioselectivity, e.g. in asymmetric hydrogenation, allylic
substitution, hydrosilylation, etc. Among them, phos-
phine ligands, which have stereogenic phosphorus
atom(s) induce extremely high enantioselectivity in
asymmetric hydrogenation.1d,2 These P-stereogenic lig-
ands, however, involve some synthetic difficulties
including resolution and can suffer from racemization
at higher temperatures.

We have reported chiral phosphinediamine ligands hav-
ing an N�P�N backbone, which would enable the con-
struction of a stereogenic phosphorus center by
selective ligation of the ligand to metal with their
central phosphine unit and one of amine units. These
chiral phosphinediamine ligands afforded high enan-
tioselectivities up to 95% ee in the Rh(I)-catalyzed
asymmetric hydrogenation of acrylic acid derivatives.3

In this reaction, the presence of stereogenic phosphorus
atoms formed by the ligation and utilization of electro-

static interactions between the substrate and the free
amino unit of the ligand enabled effective chiral induc-
tion.3 We have designed other N�P�N type ligands
[(S,S)-PhP(Ox-R)2)] 1a–c having a phosphine unit and
two homochiral dihydrooxazolyl units4 to examine the
possibility of the formation of P-stereogenic centre by
the ligation to metal and their application in asymmet-
ric allylic substitution reactions (Scheme 1).

Bis[((S) -4-alkyl -4,5-dihydrooxazol -2-yl)phenyl]phenyl-
phosphine (S,S)-bisoxazolylphosphine: (S,S)-PhP(Ox-
R)2] ligands 1a–c were prepared by lithiation of 4-alkyl-
2-phenyl-4,5-dihydrooxazole followed by the reaction
with dichlorophenylphosphine and were purified by
column chromatography using an eluent of either hex-
ane–ethyl acetate or of hexane–diethyl ether mixture.5
31P and 1H NMR analyses indicated that ligands 1a–c
coordinated to various metal ions, such as Pd(II),
Pt(II), Ni(II), or Rh(I), as a bidentate ligands.6 As for
PdCl2 and PtCl2 complexes bearing 1a–c ligands, only
one complex was observed by 31P NMR analysis in the
temperature range of 25 to −40°C which implies a
highly selective ligation of these ligands to metal. In the
case of �-C3H5 palladium complexes bearing ligand 1,
the complex forms a mixture of exo- and endo-iso-
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Scheme 1.

mers in solution and the equilibrium favoured largely
one isomer for the complexes bearing the 1b or 1c
ligand. X-Ray crystal analysis of the single crystals
obtained from [PdCl2((S,S)-PhP(Ox-tBu)2)] or [Pd(�3-
MeC3H3Me)((S,S)-PhP(Ox-tBu)2)]PF6 indicated that
the selective bidentate ligation of the ligand and the
phosphorus atom in the complexes had an (S)-
configuration7 (Fig. 1). Thus the bisoxazolylphosphine
ligands 1 could afford a stereogenic phosphorus atom
by the selective ligation to metals which form a square-
planar complex. In the case of the 1,3-dimethyl-�-allyl
complex, the �-allyl unit coordinated to the palladium
in an exo-manner in the crystal. As to the equilibrium
of exo- and endo-species in solution, [Pd(1,3-diphenyl-
�-allyl)(1c)]+ and [Pd(1,3-diphenyl-�-allyl)(1b)]+ com-
plexes were examined by 1H and 31P NMR and showed
that the equilibrium between two diastereomeric com-
plexes favoured to the exo-species (Scheme 2).8 The
diastereomeric ratios (exo to endo ratio) in [Pd(1,3-
diphenyl-�-allyl)(1c)]+ and [Pd(1,3-diphenyl-�-allyl)-
(1b)]+ were 81:19 and 69:31, respectively, at ambient
temperature. In the case of the 1,3-dimethyl-�-allyl
complexes, the exo-species was also dominant.

In the asymmetric allylic alkylation of 1,3-diphenyl-
propenyl acetate with dimethyl sodiomalonate, the lig-
and 1c having tert-butyl substituents afforded high
enantioselection of 94% ee in acetonitrile, while the

ligand 1a with methyl units evoked lower chiral induc-
tion of 75% ee (Table 1). Thus the bulkiness of the alkyl
substituent on the oxazoline ring affected the chiral
induction in this asymmetric alkylation reaction. For
3-penten-2-yl acetate 2b, which affords 1,3-dimethyl-�-
allyl intermediate, high stereoinduction has been sel-
dom reported. The non P-stereogenic phosphino-
oxazoline ligands9,10 by Pfaltz, Helmchen or Williams,
phosphine imine ligand by Morimoto11 or
pyridinophosphine ligand by Ito12 caused moderate chi-
ral induction between 60 and 80% ee in the alkylation
of this 3-penten-2-yl acetate. High enantioselectivities
about 90% ee have been achieved with the chiral
diphosphine ligand developed by Trost13 or with the
phosphinooxazoline ligand bearing tricyclic oxazoline
moiety by Helmchen.14 The present N�P�N type ligand
1c afforded very high ee (94%) at room temperature,

Scheme 2.

Figure 1. Crystal structure of Pd-(S,S)-1 complexes. A: [PdCl2((S,S)-PhP(Ox-tBu)2)]. B: [Pd(�3-MeC3H3Me)((S,S)-PhP(Ox-
tBu)2)]+.
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Table 1. Asymmetric allylic alkylation of racemic-2 by Pd(C3H5)(bisoxazolylphosphine) catalystsa

Entry R of 2 Pd-L* Solvent Yield (%)b % ee (Confign.)c

Ph Pd-1a1 THF 62 75 (S)
Pd-1b THF 74 92 (S)2
Pd-1c3 THF 38 70 (S)

4 Pd-1a CH3CN 49 75 (S)
Pd-1b5 CH3CN 52 94 (S)
Pd-1c6 CH3CN 33 94 (S)

7 Me Pd-1a THF 92 64 (S)
Pd-1b THF 99 85 (S)8
Pd-1c9 THF 98 94 (S)

10 Pd-1a CH3CN 46 50 (S)
Pd-1b11 CH3CN 46 75 (S)
Pd-1c CH3CN 26 84 (S)12

a Conducted at 25°C with 2 (1 mmol), dimethyl malonate (1 mmol), NaH (1 mmol), and [Pd(�3-C3H5)(bisoxazolylphosphine 1)]PF6 (0.01 mmol)
in 10 ml of THF or acetonitrile.

b Isolated yield.
c Determined by HPLC (Chiralcel OD) for the product from 1,3-diphenylpropenyl acetate. Determined by 1H NMR analysis in C6D6 using shift

reagent (Eu(hfc)3) for the product from pentenyl acetate.

which is the highest value so far reported in the alkyla-
tion of 3-penten-2-yl acetate, while with the non P-
stereogenic phosphineoxazoline (Ph2P(Ox-R)) catalyst
only moderate ee’s (56–71%) were reported.9a,10 Various
nucleophiles were also examined in the reaction of 2b.
With sodium salt of dimethyl acetamidomalonate as
nucleophile, the Pd-1c complex afforded very high
enantioselectivity of 95% ee in the reaction in THF at
25°C. With dimethyl sodiotrifluoroacetamidomalonate,
the Pd-1c catalyst induced 90% ee at 40°C. The asym-
metric allylic amination of the pentenyl acetate with the
ligand 1c also afforded high ee (85%) using sodioben-
zoylhydrazine as nucleophile (Scheme 3). These results
would indicate the effectiveness of the chiral field of the
P-stereogenic center formed through the selective liga-
tion of the ligand to palladium(II) species.

It is well accepted that, in the allylic alkylation reaction
by Pd catalyst bearing a P�N type ligand, the nucleo-
phile attacks the �-allyl carbon trans to the phosphine
unit,9c,10,15 and that the stereoselection strongly depends
on the ratio of the exo- and endo-species in solution. In
the reaction of 3-penten-2-yl acetate or 1,3-diphenyl-
propenyl acetate using bisoxazolylphosphine ligand 1c,
the observed enantioselectivities can not be explained
only by the ratio of the exo- and endo-species in
solution. The stoichiometric reaction of [Pd(1,3-
diphenyl-�-allyl)((S,S)-PhP(Ox-tBu)2)]+ species with
dimethyl sodiomalonate was monitored by 31P NMR
analysis at low temperature under the conditions of a
slow equilibrium between the exo- and endo-species; it
was seen that the dominant exo-species had a much
higher reactivity toward the enolate anion than the

Scheme 3.
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Scheme 4.

endo-species did. This reactivity difference between the
exo- and endo-complexes would also explain the high
stereoselection by Pd-1c catalyst in the acyclic
substrates.

In the alkylation of cyclic substrates, the asymmetric
induction was dependent on the size of substrate and
the ligand used: In the reaction of cyclohexenyl acetate
7a with the sodium salt of dimethyl methylmalonate,
the Pd-1 catalysts afforded a moderate ee, though the
Pd-1a catalyst afforded a higher ee than Pd-1b or 1c
(Scheme 4). Similar results were also obtained in the
case of cyclopentenyl acetate. In the reaction of cyclo-
heptenyl acetate 7b, the ligands with a bulky sub-
stituent, 1b and 1c afforded high ee (85–86%). The
stereoselection was also dependent on the nature of
nucleophile which suggests a change in reactivity differ-
ence between the exo- and endo-species towards the
nucleophiles; with dimethyl sodiomalonate, the cyclo-
hexenyl acetate afforded a lower ee (ca. 30%), while the
Pd-phosphinooxazoline complex without a P-stereo-
genic center afforded a nearly racemic product in the
case of cyclohexenyl acetate.16 Thus, the present P-
stereogenic Pd-bisoxazolylphosphine catalysts17 proved
to be effective at inducing a high enantioselectivity in
the allylic substitution of acyclic and cyclic substrates.18

We are currently applying these chiral N�P�N type
ligands to other asymmetric reactions.
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